In linear algebra terms, a Singular Vector Decomposition (SVD) is the decomposition of a matrix X into three matrices, each having special properties. If X is a matrix with each variable in a column and each observation in a row then the SVD is
$$!X = UDV^T$$
where the columns of U are orthogonal (left singular vectors), the columns of V are orthogonal (right singluar vectors) and D is a diagonal matrix (singular values). Here I perform a SVD on the iris dataset in R.
#use the iris dataset #for more info type ?iris names(iris) [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species" head(iris) Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 5.1 3.5 1.4 0.2 setosa 2 4.9 3.0 1.4 0.2 setosa 3 4.7 3.2 1.3 0.2 setosa 4 4.6 3.1 1.5 0.2 setosa 5 5.0 3.6 1.4 0.2 setosa 6 5.4 3.9 1.7 0.4 setosa #perform hierarchical clustering h <- hclust(dist(iris[,c(1:4)])) #inside the h object names(h) [1] "merge" "height" "order" "labels" "method" "call" [7] "dist.method" #order corresponds to the hierarchical clustering order on iris rows h$order [1] 108 131 103 126 130 119 106 123 118 132 110 136 141 145 125 121 144 101 137 149 116 111 148 113 140 [26] 142 146 109 104 117 138 105 129 133 150 71 128 139 115 122 114 102 143 135 112 147 124 127 73 84 [51] 134 120 69 88 66 76 77 55 59 78 87 51 53 86 52 57 75 98 74 79 64 92 61 99 58 [76] 94 107 67 85 56 91 62 72 68 83 93 95 100 89 96 97 63 65 80 60 54 90 70 81 82 [101] 42 30 31 26 10 35 13 2 46 36 5 38 28 29 41 1 18 50 8 40 23 7 43 3 4 [126] 48 14 9 39 17 33 34 15 16 6 19 21 32 37 11 49 45 47 20 22 44 24 27 12 25 #order dataset by hierarchical clustering data_ordered <- iris[h$order,] head(data_ordered) Sepal.Length Sepal.Width Petal.Length Petal.Width Species 108 7.3 2.9 6.3 1.8 virginica 131 7.4 2.8 6.1 1.9 virginica 103 7.1 3.0 5.9 2.1 virginica 126 7.2 3.2 6.0 1.8 virginica 130 7.2 3.0 5.8 1.6 virginica 119 7.7 2.6 6.9 2.3 virginica #perform the SVD svd1 <- svd(data_ordered[,c(1:4)]) #inside the svd1 object are the 3 separate matrices names(svd1) [1] "d" "u" "v" #left singular vectors corresponding to the rows dim(svd1$u) [1] 150 4 #right singular vectors corresponding to the columns dim(svd1$v) [1] 4 4 #singular vectors svd1$d [1] 95.959914 17.761034 3.460931 1.884826 head(svd1$u) [,1] [,2] [,3] [,4] [1,] -0.1054558 0.08012812 -0.10637239 -0.134454550 [2,] -0.1049482 0.07556145 -0.12829465 -0.009698646 [3,] -0.1026729 0.07009470 -0.01813207 0.036368121 [4,] -0.1042575 0.06052312 -0.03846043 -0.125453575 [5,] -0.1020462 0.05482986 -0.11193348 -0.120558750 [6,] -0.1114810 0.11657800 -0.13510080 0.030542780 #plot all left singular vectors par(mfrow=c(1,4)) plot(svd1$u[,1],1:150,pch=19) plot(svd1$u[,2],1:150,pch=19) plot(svd1$u[,3],1:150,pch=19) plot(svd1$u[,4],1:150,pch=19) #reset graphical parameter par(mfrow=c(1,1))
The first, second, third and fourth left singular vectors.
How do the original data points look?
#the hierarchical clustering order ordered the species nicely table(data_ordered[ c(1:50),5]) setosa versicolor virginica 0 3 47 table(data_ordered[ c(51:100),5]) setosa versicolor virginica 0 47 3 table(data_ordered[ c(101:150),5]) setosa versicolor virginica 50 0 0 plot(data_ordered$Sepal.Length,c(1:150),pch=19,xlim=c(0,8.1),xlab="Length") points(data_ordered$Sepal.Width,c(1:150),col=2, pch=19) points(data_ordered$Petal.Length,c(1:150),col=3, pch=19) points(data_ordered$Petal.Width,c(1:150),col=4, pch=19) abline(h=50) abline(h=100)
Each measurement is coloured in a different colour. The hierarchical clustering order makes it easier to see different properties of different species.
Plotting the first and second left singular vectors and colouring by species.
first <- svd1$u[,1] second <- svd1$u[,2] species <- data_ordered$Species species <- as.numeric(species) first <- data.frame(first,species) second <- data.frame(second,species) plot(first$first, second$second, pch=19, col=first$species, xlab="First left singular vector", ylab="Second left singular vector")
In green are virginica, red are versicolor and black are setosa.
Variance explained by the number of singular vectors
svd1$d^2/sum(svd1$d^2) [1] 0.9653029807 0.0330689513 0.0012556535 0.0003724145 plot(svd1$d^2/sum(svd1$d^2), pch=19, xlab="Singluar vector", ylab="Variance explained")
One singular vector is enough to explain 96.5% of the variance.
Obtaining the original matrix
#multiply each singular matrix to obtain the original original <- svd1$u[,1:4] %*% diag(svd1$d[1:4]) %*% t(svd1$v[,1:4]) head(original) [,1] [,2] [,3] [,4] [1,] 7.3 2.9 6.3 1.8 [2,] 7.4 2.8 6.1 1.9 [3,] 7.1 3.0 5.9 2.1 [4,] 7.2 3.2 6.0 1.8 [5,] 7.2 3.0 5.8 1.6 [6,] 7.7 2.6 6.9 2.3 head(data_ordered) Sepal.Length Sepal.Width Petal.Length Petal.Width Species 108 7.3 2.9 6.3 1.8 virginica 131 7.4 2.8 6.1 1.9 virginica 103 7.1 3.0 5.9 2.1 virginica 126 7.2 3.2 6.0 1.8 virginica 130 7.2 3.0 5.8 1.6 virginica 119 7.7 2.6 6.9 2.3 virginica
Summary
Singular Vector Decomposition can reduce a large matrix of values into 3 separate matrices, each having special properties. The right singular vectors are actually the same as the principal components in a PCA (see this article for more information). The left singular vectors correspond to the rows of the matrix and showed that setosa are characteristic different from the other two species. The diagonal matrix D provides the amount of variance explained by the number of singular vectors.
SVD was taught in week 3 of the Data Analysis course provided by coursera. Some of the code in this post was adapted from the dimension reduction lecture; please refer to the lecture for more information.

This work is licensed under a Creative Commons
Attribution 4.0 International License.