Once you've read in a tab delimited file into a data.frame, here's one way of operating on the rows
#read in file data <- read.table("test.tsv",header=TRUE,row.names=1) #print out row number 1 data[1,] # A B C D E F #row_1 2 4 3 9 9 13 #calculate the variance of row 1 in the data.frame var(as.vector(as.matrix(data[1,]))) #[1] 18.66667 #Just to test the results #make some test variable corresponding to the values in row 1 test <- c(2,4,3,9,9,13) #calculate the variance var(test) #[1] 18.66667
I'm still wondering why I need two conversion steps ( e.g. var(as.vector(as.matrix(data_subset[1,]))) ), since var(as.vector(data_subset[1,])) doesn't work. In time, when I learn more about data.frames and R in general I hope to address this or if some expert comes across this, may you kindly explain it to me. Thanks!
Calculating the variance for each row and storing the variance as an additional column
for (i in 1:nrow(data_subset)){ print(var(as.vector(as.matrix(data_subset[i,])))) } #to add the variance as an additional column in the data frame data_subset$variance <- apply(data_subset,1,function(row) var(as.vector(row[1:6]))) #and to delete the variance column #data_subset <- subset(data_subset,select=-c(variance))

This work is licensed under a Creative Commons
Attribution 4.0 International License.
read.table() returns a data.frame object, but the following code works…
> a b data row.names(data) data
x y
a 1 5
b 2 6
c 3 7
d 4 8
> var(as.vector(data[,1]))
[1] 1.666667
> var(data[,1])
[1] 1.666667
Could you show an example using read.table()?
>x
a b
1 1 5
2 2 6
3 3 7
4 4 8
> write.table(x, file=”test.tab”, quote=F, row.names=F)
> y y
a b
1 1 5
2 2 6
3 3 7
4 4 8
> x
a b
1 1 5
2 2 6
3 3 7
4 4 8
> var(as.vector(y[,1]))
[1] 1.666667
> var(x[,1])
[1] 1.666667
> x
a b
1 1 5
2 2 6
3 3 7
4 4 8
> write.table(x, file=”test.tab”, quote=F, row.names=F)
> y = read.table(file=”test.tab”, head=T)
> y
a b
1 1 5
2 2 6
3 3 7
4 4 8
> x
a b
1 1 5
2 2 6
3 3 7
4 4 8
> var(as.vector(y[,1]))
[1] 1.666667
> var(x[,1])
[1] 1.666667
>